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THE FIDUCIAL ARGUMENT IN STATISTICAL 
INFERENCE 

BY R. A. FISHER,  Sc.D., F.R.S. 

I. THE NATURE OF FIDUCIAL PROBABILITY 

IN a series of papers from 1930, the author has called attention to a form of argument, which 
seems to have been entirely overlooked by the clttssical writers on probability, but which 
arises naturally from the exact tests of significance, when the variate is tabulated in terms 
of the probability. This form of argument leads in certain cases to rigorous probability 
statements about the unknown parameters of the population from which the observational 
data are a random sample, without the assumption of any knowledge respecting their 
probability distributions a priori. For such deductions we need to know the exact sampling 
distributions of statistical estimates, calculable from the observations only, of the unknown 
parameters, and these distributions must be continuous. It was probably these restrictions 
which stood in the way of the recognition, by the early writers on probability, of a form of 
argument having both theoretical interest and practical value ; for the problems of distribu- 
tion of which they possessed the exact solutions were nearly all discontinuous, being, like 
the binomial expansion, and the many similar generating functions given by Laplace, 
distributions of frequencies, rather than of continuously variable measurements, or func- 
tions calculated from these. The exact treatment of the mean of a normal sample was first 
given by “Student” in 1908, and since that time numerous exact solutions have become 
available, covering somewhat completely the problems connected with normally distributed 
variates, in addition to others of a more miscellaneous character. 

The form of argument is extremely simple and may be illustrated by applying it to 
“Student’s” solution. If a sample of n observations, zl, ..., za, has been drawn from a 
normal population having a mean value p, and if from the sample we calculate the two 
Statistics 

and 

1 
n Z = - s  (2) 

1 
n- 1 

s*= - s (Z-Z)*, 
where 8 stands for summation over the sample, “Student” has shown (1925) that the 
quantity t, defined by the equation 

is distributed in different samples in a distribution dependent only from the size of the 
sample, n. It is possible, therefore, to calculate, for each value of n, what value oft  will be 
exceeded with any assigned frequency, P, such as 1 per cent. or 5 per cent. These values of 
t are, in fact, available in existing tables (Fisher, 1925-34). 

(Z- p) l /n  I =  
8 ’  
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It must now be noticed that t is a continuous function of the unknown parameter, the 
mean, together with observable values, 5, s and n, only. Consequently the inequality 

t > t, 
p<Z-st1/1/71, 

so that this last inequality must be satisfied with the same probability as the first. This 
probability is known for all values oft, , and decreases continuously as t,  is increased. Since, 
therefore, the right-hand side of the inequality takes, by varying t, , all real values, we may 
state the probability thnt p is less than any assigned value, or the probability that it lies 
between any assigned values, or, in short, its probability distribution, in the light of the 
sample observed. 

It is of some importance to distinguish such probability statements about the value of p, 
from those that would be derived by the method of inverse probability, from any postulated 
knowledge of the distribution of p in the different populations which might have been 
sampled. It is only when the idea is totally set aside that we are seeking an inverse 
probability, that the meaning of fiducial probability is clearly apprehended. The inverse 
probability distribution would specify the frequency with which p would lie in any assigned 
range dp, by an absolute statement, true of the aggregate of cases in which the observed 
sample yielded the particular statistics E and s. This can be found by Bayes’ procedure, if 
the prior distribution of p is known. The distribution which we have obtained is inde- 
pendent of all prior knowledge of the distribution of p, and is true of the aggregate of all 
samples without selection. It involves Z and s as parameters, but does not apply to any 
special selection of these quantities. To distinguish it from any of the inverse probability 
distributions derivable from the same data i t  has been termed the fiducial probability 
distribution, and the probability statements which it embraces are termed statements of 
fiducial probability. To attempt to define a prior distribution of p which shall make the 
inverse stntements coincide numerically with the fiducial statements is really to slur over 
this distinction between the meaning of statements of these two kinds. 

It is necessary to emphmise also that statements similar to t.hose of fiducial probability 
can only represent the true state of knowledge derivable from the sample, if the statistics 
used contain the whole of the relevant information which the sample provides. If, for 
example, an estimate s’, derived from the mean error, had been used in place of one derived 
from the mean square error, and a quantity t‘ had been defined by the equation 

is equivalent to the inequality 

t’ = (5 - PI z/r, 
s‘ ’ 

the distribution of t’, like that of t ,  would depend only on the size of the sample; and 
probability statements accurate for t’ could be expressed in terms of p. The probability 
distribution for p obtained in this way would, of course, .differ from that obtained from t ,  
and the probability statements derived from the two distributions would be discrepant. 
There is, however, in the light of the theory of estimation, no difficulty in choosing between 
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such inconsistent results, for i t  has been proved that, whereas s‘ uses only a portion of the 
information utilised by s, on the contrary, s utilises the whole of the information used by 
a’, or indeed by any alternative estimate. To use a’, therefore, in place of s would be 
logically equivalent to rejecting arbitrarily a portion of the observational data, and basing 
probability statements upon the remainder as though it had been the whole. Dr J. Ncyman 
has unfortunately attempted to develop the argument of fiducial probability in a way 
which ignores the results from the theory of estimation, in the light of which it was originally 
put forward. His proofs, therefore, purport to establish the validity of a host of probability 
statements many of which are mutually inconsistent. 

When, as with inferences respecting a single parameter based on the use of sufficient 
statistics only, we obtain a unique probability distribution for that parameter, all possi- 
bility of admitting mutually conflicting inferences is excluded, and the resulting distribu- 
tion may be properly termed the fiducial distribution of the parameter. The same would be 
true of inferences concerning the simultaneous values of two or more parametcrs, if such a 
unique simultaneous distribution could be obtained. Such a simultaneous distribution does 
not in general follow by any simple generalisation of the argument from the probability 
integral by which the distribution of a single parameter may be obtained, such as that 
recently developed by Dr Neyman. It is the purpose of the present note to demonstrate the 
possibility of thus completing the solution, in the simple class of problems which arise from 
the normal distribution. 

11. POSTERIOR FIDUCIAL INFERENCES 

As a preliminary we may consider the problem: Given the value of n observations 
xl, . . . , x , ~  drawn from a normal population, to find the fiducial distribution of an additional 
observation, x, not yet made. 

Two points may be noted. First, that, in the theory of inverse probability, problems of 
this kind are only to be solved after the simultaneous distribution of the population 
parameters has been obtained, and by means of this simultaneous distribution ; whereas 
by the fiducial argument they are solved directly. Second, that the concept of a fiducial 
distribution is now being applied not to a parameter of the population, but to an observa- 
tion, the distribution of which is given in terms of such parameters. With these commcnts 
we may now suppose that the observed sample has yielded statistics 

1 
n z=- s (z) 

and s (z-zp. 1 as=- 
n - 1  

Let, now, 

That t ,  so defined, is distributed, independently of the parameters of the population, in 
“Student’s” distribution for n- 1 degrees of freedom, follows (Fisher, 1925) from the fact 
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that it is the ratio of a quantity x - Z, normally distributed about zero, to an estimate of its 
standard error, statistically independent of 2 - Z, based on the mean square deviation 
among the different members of the original sample. 

It follows that the known probability that t should exceed any assigned value t,  is the 
probability that x should exceed the value .- 

“Student’s ” distribution, with the factor , therefore provides the fiducial distribu- 
tion of 

X-P 
s ’  

in which the only unknown element is the future observation, x. 
We may next consider the analogous, more general problem: Given a sample of n 

observations yielding the statistics P and s, to find the fiducial frequency distribution of thc 
statistics Z‘ and s’ derived from a subsequent sample of n‘ observations. 

In  proceeding to the solution, we again avoid all reference to unknown and hypothetical 
parameters, and develop the solution in terms of directly observable quantities only, by 
obtaining two quantities t and z, the simultaneous distribution of which .is known with 
exactitude, and which are expressible in terms of the observable features of the two samples. 

For this purpose we have 
(Z - 5’) dnn’ (n + n’ - 2) 

d n  +n‘ d ( n  - 1 )  s2+ (n’ - 1 )  s’2 
t =  - 

and 

Then it is well known that, in the aggregate of pairs of samples drawn from such a popula- 
tion, t is distributed in “Student’s” distribution for n+n‘- 2 degrees of freedom, while z 
is distributed in its own characteristic distribution, determined by the two numbers of 

nl=n- 1,  n2=n’- 1.  degrees of freedom, 

The values off’ and s’ are, of course, determined by the values of t  and z to which they 
lead, so that, substituting for t and z in their known distributions, we have for the simul- 
taneous fiducial distribution of Z‘ and s’ the following expression 

z = log s - log s’. 

4 (n +n’-  3 )  ! 2 (n - 1)t (-1) (n’ - 1)t (d-1) p-1 st n’-2 &’ &’ 
df = * (n - 3) ! * (%I - 3)  ! d7r ~ ~ l { ( n - l ) ~ 2 + ~ n ‘ - l ) s ‘ 2 +  (Z - - Z’)2 i (n+n‘ -1 ) ’  

J:+;} 
The general distribution has been established merely from the known simultaneous dis- 

tribution of t and z, and in itself gives the essential information respecting a subsequent 
sample for the sake of which knowledge of the population parameters would, in the 
traditional procedure, be sought. We may, however, now, as a particular case, allow n‘ to 
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tend to infinity, and in consequence, the statistics 2’ and s‘ to tend to the parametric values, 
p and u. The simultaneous fiducial distribution of p and u found in this way is 

The two parameters p and u are not independently distributed, that of p being distributed 
for any given u with variance u2/n, but the marginal distribution of p found by integrating, 
with respect to U, from 0 to infinity is, as might be expected, 

* (n - 2) ! 1 

in accordance with the fact that 

is distributed as is t for (n - 1) degrees of freedom. Similarly, the marginal distribution of u is 

(n- 1) s2 in accordance with the fact that 
IJ2 

is distributed as is x 2  for (n- 1) degrees of freedom. 
It thus appears that, for the special case of the mean and variance of the normal dis- 

tribution, there is no difficulty in extending the notion of fiducial probability unambigu- 
ously to the simultaneous distribution of two parameters. 

In  general, it appears that if statistics T,, T,, T,, ... contain jointly the whole of the 
information available respecting parameters 8,, 02, 8,, ..., and if functions t, ,  4 ,  t,, ... of 
the 27’s and 8’s can be found, the simultaneous distribution of which is independent of 
el, O,, 8,, ..., then the fiducial distribution of 8,, 8,, 4, ... simultaneously may be found by 
substitution. For a single statistic having a distribution dependent only on a single para- 
meter, of which it is a sufficient estimate, such a function is always provided by the 
probability integral. Hence the genesality of the method in univariate cases. 

111. APPLICATION OF THE METHOD TO SPECIAL PROBLEMS 

The process of solution of the fiducial distributions of parameters, by the recognition of 
quantities of known distribution functionally related to them, is a powerful tool for the 
solution of a variety of problems which offer difficulties to other methods of approach. This 
may be illustrated in two such problems, which are occasionally of practical interest. 
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(i) The difference between the means of two normally distributed populations 
Let us suppose that a sample of n observations has yielded a mean, I, and an estimated 

variance of the mean, s2, so that s (x - I)% 82 = _- * 
n (n-  1) ’ 

then we know that if p is the mean of the population, 

p = I + st, 

where t is distributed in “Student’s” distribution. Similarly, for the mean of a second 
population, of which we have n‘ observations, we may write 

p’ = I’ + S’t’, 

where t is distributed in “Student’s” distribution for n’- 1 degrees of freedom, indepen- 
dently oft. If now p’-p=S, 5’-z=d, 

we find that E = 6 -a= S’t’ - st;  

and since s‘ and s are known, the quantity represented on the right has a known distribution, 
though not one which has been fully tabulated. The equation may be written 

E = ~ S ~ + S ‘ ~  (t’cos R - t  sin R), 

where tan R = s/s’, so that R is a known angle. 

If t and t’ be taken m the co-ordinates of a point on a plane, the frequency of the observa- 
tions falling within any area of the plane is calculable. The points for which E has any given 
value lie on a straight line, at  a distance from the origin ~ / 4 ~ 2 + s ’ 2 ,  and making an angle 
R with the axis oft. The fiducial probability that E exceeds any given value is the frequency 
in the area above this line. If ?z and n’ are both incremed, the distribution o f t  tends to be 
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normal and independent of R ; when R is 0’ or 90° the distribution is of “ Student’s ” form. 
I n  general it involves n, n’ and R, and for any chosen probability, therefore, requires a 
table of triple entry. 

Any fiducial distribution supplies a series of possible tests of significance. In this case, 
since d is known, we may use d/ds2+d2 to test the hypothesis that 6 has the chosen value 
zero. This is, in faat, the exact test for the significance of the difference, d, between the 
observed means, equivalent to that given in 1929 by W.-V. Behrens. 

________. 

Sum of 
squares 

A 
B 

(ii) Tihe variance of a normally distributed set of means 

Suppose we have k samples of n observations each from equally variable populations, or 
othcr such material suitable for the analysis of variance. Let the analysis obtained, apart 
from cxcluded items, be as follows : 

-- 
Mean 
square 

a 
_. 

I I  
Among samplos I Emor 

Degrees of 
freedom 

n1 
n, 

- 

If a is significantly greater than b, as shown by the z test, where 

22 =log a - log b, 

there is reason to suppose that the means of the k population sampled were not all equal. 
In some such cases, though not in all, it is appropriate to suppose that these means them- 
selves constitute a sample from a normal population with unknown variance. Then the 
test of significance will have indicated that this variance is Significantly greater than zero. 
Now if 0 is the variance within samples, and + the variance of the population of means, 

B = 0 2  

or b = -  X: 0, 
n, 

where xi is distributed as is the sum of the squares of n, independent normal deviates all 
having unit variance. Similarly 

a=- X f  (O+k+). 
n1 

Hence a%- b = k+. 
x1 x 2  

But x; and xt  are distributed independently in distributions of known form, hence the 
distribution of C$ may be calculated from their simultaneous distribution. 
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Let nl/x’: and n& be taken as the coordinates of a point, then the set of points 
consistent with any given value of # lie on a straight line, making with the axis of nl/xf 
an angle, the tangent of which is alb, or e%. The fiducial probability o f #  exceeding any 
chosen value is the total frequency to the right of the corresponding line. The observed 

value of z is significant if the parallel line through the origin has to the right of it some 
95 or 99 per cent. of the total, according to the level of significance chosen. Lines which 
do not strike the axis of abscissae to the right of the origin, correspond to negative values of 
4, and are without interest for the problem stated. For large values of n, and n,, the fre- 
quency distribution tends to a normal form, without correlation, centred on the point 
(1, 1). 

Tabulation of the exact solution encounters in both problems the difficulty of triple 
entry, which may be largely mitigated by the use of a harmonic series of values of n, and n, 
appropriate for asymptotic interpolation, aa in the table of z. It is doubtful, too, whether 
the exact tests will often differ materially from the simple approximate tests commonly 
used. Nevertheless, a table of either kind, once constructed, would be probably of suffi- 
ciently frequent use in enabling experimenters to form a rapid opinion as to what interpreta- 
tions of their data should be regarded as acceptable. They are here principally of interest 
as illustrating the simplicity with which the fiducial argument may be applied to this type 
of problem. 
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